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Abstract:

In algebraic geometry a central role is often played by projective hypersurfaces. A lot of mathematicians

have studied their geometric and algebraic properties, also reflected in the so called hessian locus, which we will

analyze in this thesis. Interest in this natural construction associated to a projective hypersurface goes back

centuries.

If X = V (f) ⊂ Pn is a hypersurface, not necessarily smooth, defined by a homogeneous polynomial f ∈
K[x0, · · · , xn]d of degree d (where K is an algebraically closed field of characteristic 0), we can then naturally

define the Hessian matrix of f as the square symmetric matrix, whose entries are the second partial derivatives

of f with respect to the xi’s, i.e. the matrix

Hess(f) =

[
∂2f

∂xi∂xj

]
i,j=0,··· ,n

.

The Hessian locus Hf of X is then defined as the zero locus V (hess(f)), where hess(f) is the determinant of

Hess(f), which is either a homogeneous polynomial of degree (d− 2)(n+ 1) (this happens, for example, if X is

a non-singular hypersurface) or is identically zero. The problem of characterizing the hypersurfaces X = V (f)

for which the determinant hess(f) is identically zero has a long history. Since the middle of the 19th century,

several authors have worked on this problem: in the 1850’s, both in [Hes51] and [Hes59], Hesse proposed a

remarkable equivalence, by claiming that a hypersurface defined by a polynomial with vanishing hessian has

necessarily to be a cone (the converse is clearly true). This happened to be false and in a fundamental paper of

1876 ([GN76]) Gordan and Noether proved the following:



Theorem A. (Gordan-Noether)

Let X = V (f) ⊂ Pn be a hypersurface defined over a field K of characteristic 0 and assume that hess(f) ≡ 0.

Then, if n ≤ 3, X is a cone.

They introduced the fundamental restriction on the admissible dimension of the projective space and pro-

vided counterexamples with n ≥ 4. The so called ”Perazzo cubic 3-fold” in P4 (introduced in [Per00]) is the

simplest such counterexample, which will be analyzed in this thesis (Section 1.5).

In the first chapter of this thesis, we will give a new proof of this fundamental result due to Gordan and

Noether. We will actually show a theorem (see the following Theorem B), equivalent to Gordan and Noether’s

result, which deals with the so called standard Artinian Gorenstein algebras. A standard Artinian Gorenstein

K−algebra (in the thesis abbreviated to SAGA) is an Artinian graded K−algebra R = ⊕N
i=0R

i, with the Ri’s

of finite dimension, such that R is standard (i.e. generated in degree 1) and it satisfies the Poincaré-Gorenstein

duality (i.e. RN ≃ R0 ≃ K and the pairing given by the multiplication map Ri × RN−i → RN is perfect).

An example is given by the even cohomology ring of an oriented compact Kähler variety X of even dimension

which is generated in degree 2. In this setting the well-known Hard Lefschetz Theorem holds and a natural

question is whether a general standard Artinian Gorenstein algebra satisfies an analogous property. In the

80’s, inspired by the aforementioned theorem, the so-called Lefschetz properties for an Artinian algebra were

defined. Roughly speaking, we say that an algebra R satisfies the weak Lefschetz property if the multiplication

map x· : Rk → Rk+1 is of maximal rank for all k ≥ 0 and x ∈ R1 general. In a similar way, the strong Lefschetz

property is defined, when the same property holds for multiplication maps by powers of general elements in

degree 1. In the first chapter of this thesis we prove the following

Theorem B.

For all standard Artinian Gorenstein K−algebras R, such that dim(R1) is at most 4, the strong Lefschetz property

in degree 1 holds, i.e. there exists an element x ∈ R1 such that the multiplication map xN−2· : R1 → RN−1 is

an isomorphism.

Despite of the algebraic nature of the statement, our proof of Theorem B is characterized by a geometric

approach and gives, as a byproduct, a new proof of Theorem A due to Gordan and Noether, which Theorem B

is equivalent to, as said above.

The interesting and, in some sense, surprising equivalence between Theorem A and Theorem B (see Section

1.4 or [HMM+13, Rus16] for example) is realized by a connection between these different settings based on

Macaulay’s theory of Inverse Systems ([HMM+13, Theorem 2.71] or the original [Mac94]), which allows to

construct any standard Artinian Gorenstein algebra, from a homogeneous form in a finite number of variables.

A natural question arising from our work is whether the methods used to prove Theorem B have more

applications and, in particular, if they could be applied to study problems related to other strong or weak

Lefschetz properties for Gorenstein rings, which, let us stress, are known for only few Artinian algebras. With

this in mind, in Chapter 2, we treat some open cases, by focusing on a particular example of standard Artinian

Gorenstein K− algebras, namely the Jacobian ring of a smooth hypersurface. In general, if X = V (f) ⊂ Pn is

a smooth hypersurface of degree d, with f ∈ K[x0, · · · , xn]d, one can consider the Jacobian ideal of f

Jf =

(
∂f

∂x0
, · · · , ∂f

∂xn

)
generated by the partial derivatives of f with respect to the xi’s and the Jacobian ring R = S/Jf . In particular,

we deal with Jacobian rings of smooth cubic threefolds in P4 and smooth cubic fourfolds in P5 and we prove

the following:

Theorem C.

Let R be the Jacobian ring of a smooth cubic threefold. Then R satisfies the strong Lefschetz property, i.e.



the general element x ∈ R1 is such that the multiplication maps x3· : R1 → R4 and x· : R2 → R3 are both

isomorphisms.

If R is the Jacobian ring of a smooth cubic fourfold, then for a general x ∈ R1 the multiplication map x4· :
R1 → R5 is a bijection, i.e. the strong Lefschetz property holds in degree 1.

Theorem C will follow from a more general statement for complete intersection Gorenstein algebras pre-

sented by quadrics, i.e. quotients of K[x0, · · · , xn] by ideals generated by a regular sequence of homogeneous

polynomials of degree 2. These results provide evidence for a well known conjecture which states that com-

plete intersection Gorenstein algebras in characteristic 0 should satisfy the Lefschetz properties (see for example

[HMM+13, Conjecture 3.46]). Furthermore, we will extend our proof of some of the strong Lefschetz properties

to complete intersection Gorenstein algebras presented by quadrics, when the dimension of R1 is larger.

In the third chapter, we continue the study of cubic hypersurfaces from the perspective of their Hessian

loci. As observed above, given a smooth cubic hypersurface X = V (f) ⊂ Pn, we can consider the associated

Hessian locus Hf , which is a hypersurface of degree n+1. By studying the nature of the Hessian matrix and its

connections with elements in the Jacobian ideal of f , interesting phenomena arise. By exploiting properties of

this type, as also a stratification of Pn given by the decreasing rank of the Hessian matrix via the evaluation map,

we will analyze the geometry of these Hessian hypersurfaces, of their singular loci and their desingularizations.

The geometry of cubic hypersurfaces in Pn and their Hessians has been studied by many authors (see for example

[CO20,GR15,Huy]). In particular, for n = 3, in [DvG07] the authors study the classical case of the general

cubic surface and of the associated Hessian quartic surface, which is singular in exactly 10 isolated points.

Moreover, [AR96, Appendix IV] studies the case of cubic threefold in P4. In particular, the author considers

the Hessian quintic threefold H associated to a general cubic threefold and constructs a correspondence variety

over H, which represents a desingularization of the Hessian hypersurface. Adler, not only shows that in the

general case this Hessian hypersurface is singular along a curve, but he also studies the geometric properties of

such a curve, such as smoothness and irreducibility, and computes its degree and its genus.

With this purpose, we start analyzing and generalizing in every dimension some constructions described in

[AR96, Appendix IV]. By studying the rank of the Hessian matrix, we will consider the loci

Dk(f) = {[x] ∈ Pn | Rank(Hess(f)|x) ≤ k},

which will be identified with the intersections Qk ∩P(J2
f ), where Qk is the locus of quadrics in Pn whose rank is

at most k. By using the results described for example in [Har95], we can then get the expected dimension and

the degree (if they are non-empty) of the loci Dk’s. This can be seen as a first step in the analysis of the Hessian

hypersurface H, since the loci Dk’s are strongly related with the singularities of H, indeed, by generalizing one

of the results presented in [AR96, Appendix IV], we prove the following:

Theorem E.

For any smooth cubic hypersurfaces V (f) ⊂ Pn, we have that Dn−1(f) = Sing(H).

To prove the above result, we will consider a correspondence variety over H which can be described as

Γf = {([v], [w]) ∈ Pn × Pn | ∂v∂w(f) = 0},

and which has also an important intrinsic geometric meaning: indeed, by also exploiting the existence of an

involution, naturally defined over Γf , we show the following

Theorem F.

For the general smooth cubic hypersurface V (f), we have that Γf is smooth and the natural projection π1 : Γf →
H is a desingularization for the Hessian hypersurface.



We also show that for a general smooth cubic fourfold X = V (f) another property of the loci Qk is inherited

by the loci Dk(f): indeed we have that Sing(Dk(f)) = Dk−1(f). This means that for f general, the locus Dk(f)

is smooth outside the points where the Hessian matrix has rank strictly smaller than k. Since in [RV17] the

authors show that for V (f) smooth and general cubic fourfold in P5, the locus D3(f) is empty, we get that

in the general case the Hessian hypersurface associated to a smooth cubic fourfold is singular over a surface

which is smooth. On the other hand, looking at the expected dimensions of these loci, one has that for bigger

dimensions (namely for Hessians associated to cubic hypersurfaces in Pn, with n ≥ 6) the singular locus of the

Hessian hypersurface is itself singular. It is then natural to approach the study in the case of P5, the first open

and the last one with a smooth singular locus, for f general. In this last part, we will set the field K = C, since
we will use also techniques and notions of singular cohomology, even if some results still hold in a more general

setting.

In general, given a vector bundle E and a line bundle L over a projective varietyX, one can consider a symmetric

vector bundle morphism φ : E → E∗ ⊗ L and define the loci

D′
k(φ) = {x ∈ X | Rank(φx) ≤ k},

known as degeneraci loci. By considering the symmetric vector bundle map φ = Hess(f)· : On+1
Pn → On+1

Pn (1),

given by the multiplication by the Hessian matrix of a cubic hypersurface V (f), it then follows that the lociDk(f)

considered above coincide with the degeneraci loci D′
k(Hess(f)·). By analyzing these loci from this perspective,

by using for example results of [FL83,HT90,Tu89], one can show the non-emptiness and the connectedness of

suitable loci Dk and, by using the approach presented in [HT84], one can also calculate some Chern classes.

From this, we prove:

Theorem G.

Let V (f) be a general smooth cubic fourfold. Then the singular locus of the associated Hessian hypersurface

Z := Sing(Hf ) is a smooth, irreducible and minimal surface of general type with degree 35 with numerical

invariants K2
Z = 315, geometric genus pg(Z) = 55, irregularity q(Z) = 0 and (topological) Euler characteristic

e(Z) = 357. Moreover, its canonical divisor is KZ = 3H|Z + η (where H is the hyperplane class in P5 and η is

a non-trivial 2-torsion element in Pic0(Z)) and Z is projectively normal

To conclude, let us stress that for such a surface Z, we will construct a natural unramified double cover,

which will turn out also to be connected (as proved in Appendix A, by using tools coming from representation

theory).

In the following, I attach also a partial bibliography of the thesis. The topics and the results of this thesis

have also been presented in [BF22] and [BFP22] (the first paper has already been published, the second one has

been accepted for publication by Selecta Mathematica).
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Lineäre Substitutionen von n andern unabhángigenVariabeln auf eine homogene Function sich zurück-führen lässt, die
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