
Exploring the Design and Implementation of
Pruning Techniques for Deep Neural Networks

Author: Andrea Bragagnolo
Supervisor: Prof. Marco Grangetto

Reviewers: Prof. Niculae Sebe, Prof. Alasdair Newson

Deep learning models have become increasingly complex and resource-hungry,
making them difficult to deploy on devices with limited resources, such as smart-
phones or FPGAs. This has led to a shift towards client-server systems, where
the trained model resides on a powerful server, and the client sends requests
to the server for inference. However, this approach raises concerns about data
privacy, internet connectivity, and latency. Researchers are exploring various
techniques to reduce the computational requirements of deep learning models
to address these issues, including re-designing network topologies, quantiza-
tion, and pruning. These techniques aim to reduce the number of parameters,
memory footprint, and computation required for inference, making it possible
to deploy models directly on consumer devices. This work focuses on neural
network pruning, providing several contributions to the literature.

First, we propose an unstructured pruning technique that removes the need
for preliminary training of the model before applying the pruning step. Instead,
our procedure, dubbed LOBSTER [5], employs a sensitivity-based regulariza-
tion by exploiting the already available gradient of the loss function, avoiding
additional derivative computations. This allows us to apply a joint train-and-
pruned approach. We applied LOBSTER to standard computer vision tasks,
such as image classification and segmentation, and compared it to state-of-the-
art methods.

The unstructured nature of the sparsity introduced with LOBSTER can
limit the practical applications of the pruned networks. We present a struc-
tured approach to confront this issue. SeReNe [7] is a method for learning
sparse topologies with a structure by exploiting the concept of neural sensitiv-
ity as a regularizer. We define the sensitivity of a neuron as the variation of
the network output with respect to the variation of the neuron’s activity (i.e.,
the post-synaptic potential of the neuron), and the lower the sensitivity of a
neuron, the less the network output is perturbed if the neuron output changes.
Thanks to this sensitivity formulation, this procedure can drive all the neuron’s
parameters to zero, allowing learning of sparse network topologies with fewer
neurons (fewer filters for convolutional layers). As a side benefit, smaller and
denser architectures may also speed up network execution thanks to better use
of cache locality and memory access pattern.

As seen throughout the thesis, modern pruning techniques can significantly
reduce memory requirements and inference time, but they often have limited
practical benefits when deployed on resource-constrained devices. Existing sim-
plification methods have limitations, such as applying only to specific archi-
tectures or requiring special hardware or software. To ease the deployment
of pruned neural networks, we propose “Simplify” [1], a PyTorch-compatible li-

1



brary that removes pruned neurons from a neural network, resulting in a smaller
model that can be easily saved, shared, and used without special hardware or
software. Simplify supports complex architectures like ResNet and DenseNet
and can also be applied during training, reducing memory occupation and speed-
ing up the training process. This library has proven beneficial to carry out the
next experiments.

Moved by the interest in evaluating the applicability of neural network prun-
ing, we carried out experiments to provide insight into the effect of pruning
procedures on deployed models. In particular, we investigated the benefits of
structured pruning approaches within the MPEG-7 Part 17 neural network com-
pression pipeline. Evaluating how structured pruning can benefit quantization,
entropy coding, and inference time [8, 2]. We experimentally show that, while
the structured approach achieves a lower pruning ratio, it yields better end-to-
end compression efficiency. Also, the network topology is easier to represent in
memory once the network is decompressed, and the inference time is lower. Simi-
larly, in collaboration with the Universitat Politècnica de València, we explored
the deployment of pruned neural networks on FPGAs, proposing HLSinf [4].
Our evaluation demonstrates that quantized and pruned models can primarily
benefit performance when combined with HLSinf. Specifically, results show that
up to 90x speed up can be achieved on typical medical image-based applications
using neural network models on FPGAs.

Other than just focusing on the structure of sparsification procedures, we
studied the effect of one-shot and gradual pruning strategies. Furthermore, we
will highlight some local properties of minima achieved using the two pruning
strategies. To this end, we propose PSP-entropy [6], a measure of the state of
ReLU-activated neurons, to be used as an analysis tool to better understand
the obtained sparse network models. We have observed that one-shot strategies
efficiently achieve moderate sparsity at a lower computational cost. However,
there is a limit to the maximum achievable sparsity, which can be overcome using
gradual pruning. Interestingly, the highly sparse architectures focus on a subset
of sharp minima, which can generalize well, posing some questions about the
potential sub-optimality of second-order optimization in such scenarios. This
explains why one-shot strategies fail to recover the performance for high com-
pression rates. More importantly, contrary to what could be expected, highly
sparse, gradually pruned architectures can extract general features non-strictly
correlated to the trained classes, making them unexpectedly, potentially, a good
match for transfer-learning scenarios.

Finally, we tackle the problem of the resources required to train a neural
network from a “pruning” perspective; in particular, we aim to slim the training
process by selectively disabling the gradient computation for a subset of neurons.
The proposed technique, NEq [3], allows us to find such neurons: we leverage the
concept of neuronal equilibrium to freeze the gradient computation for neurons
that no longer need updates. This reduces the time required for computing
the gradients of the neural network during the backpropagation step. Various
experiments on different tasks showed that NEq allows us to substantially reduce
the number of operations needed to perform backpropagation.

2



References

[1] A. Bragagnolo and C. A. Barbano. Simplify: A python library for optimizing
pruned neural networks. SoftwareX, 17:100907, 2022.

[2] A. Bragagnolo, E. Tartaglione, A. Fiandrotti, and M. Grangetto. On the
role of structured pruning for neural network compression. In 2021 IEEE In-
ternational Conference on Image Processing (ICIP), pages 3527–3531, 2021.

[3] A. Bragagnolo, E. Tartaglione, and M. Grangetto. To update or not to up-
date? neurons at equilibrium in deep models. In S. Koyejo, S. Mohamed,
A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in Neu-
ral Information Processing Systems, volume 35, pages 22149–22160. Curran
Associates, Inc., 2022.

[4] J. Flich, L. Medina, I. Catalán, C. Hernández, A. Bragagnolo, F. Auzanneau,
and D. Briand. Efficient inference of image-based neural network models in
reconfigurable systems with pruning and quantization. In 2022 IEEE Inter-
national Conference on Image Processing (ICIP), pages 2491–2495, 2022.

[5] E. Tartaglione, A. Bragagnolo, A. Fiandrotti, and M. Grangetto. Loss-based
sensitivity regularization: towards deep sparse neural networks. Neural Net-
works, 146:230–237, 2022.

[6] E. Tartaglione, A. Bragagnolo, and M. Grangetto. Pruning artificial neural
networks: a way to find well-generalizing, high-entropy sharp minima. arXiv
preprint arXiv:2004.14765, 2020.

[7] E. Tartaglione, A. Bragagnolo, F. Odierna, A. Fiandrotti, and M. Grangetto.
Serene: Sensitivity-based regularization of neurons for structured sparsity
in neural networks. IEEE Transactions on Neural Networks and Learning
Systems, pages 1–14, 2021.

[8] E. Tartaglione, G. Nuzzarello, A. Bragagnolo, and M. Grangetto. Structured
sparsity on embedded devices.

3


